A Pulsed Nonlinear Raman Detection of Trace Organics with SERS Enhanced Sensitivity, Phase II

Completed Technology Project (2015 - 2017)

Project Introduction

A significant technology gap for NASA astrobiology missions is the field detection of organics at the sub ppm level. Currently, NASA uses different sensing technologies such as Pyrolysis-GCMS to analyze planetary samples. These instruments require complex sample handling and can process only a limited number of samples. It is critical to develop an effective instrument with extended and enhanced capabilities to enable future planetary multiplemission needs. We propose to develop a novel nonlinear Raman spectral sensing instrument for trace organic detection at the sub ppm level based on fluoresence-free surface enhanced Raman scattering (SERS). The proposed instrument will be capable of detecting the molecular signatures in Martian samples in the field with significantly improved sensitivity (>100,000,000) and reduced noise (>100). It will offer NASA a ultra sensitive deployable instrument suitable for robotic missions in terms of in situ measurements, resolution, bandwidth, compact size, low cost, and ruggedness. The detection of organics at the sub ppm level in Martian-like soils will be applicable to several future NASA missions, in particular future rovers for the upcoming Mars 2020 mission. These mobile, fast and agile rovers are focused on collection for sample return and require non-sampling analytical instruments.

Primary U.S. Work Locations and Key Partners

A Pulsed Nonlinear Raman Detection of Trace Organics with SERS Enhanced Sensitivity, Phase II

Table of Contents

1
1
2
2
2
3
3
3

Small Business Innovation Research/Small Business Tech Transfer

A Pulsed Nonlinear Raman Detection of Trace Organics with SERS Enhanced Sensitivity, Phase II

Completed Technology Project (2015 - 2017)

Organizations Performing Work	Role	Туре	Location
Crystal Research,	Lead	Industry	Fremont,
Inc.	Organization		California
Ames Research Center(ARC)	Supporting	NASA	Moffett Field,
	Organization	Center	California

Primary U.S. Work Locations

California

Images

Briefing Chart

A Pulsed Nonlinear Raman
Detection of Trace Organics with
SERS Enhanced Sensitivity Briefing
Chart
(https://technort.paca.gov/imag

(https://techport.nasa.gov/imag e/136468)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Crystal Research, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

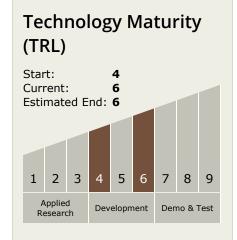
Carlos Torrez

Principal Investigator:

Suning Tang

Co-Investigator:

Suning Tang



Small Business Innovation Research/Small Business Tech Transfer

A Pulsed Nonlinear Raman Detection of Trace Organics with SERS Enhanced Sensitivity, Phase II

Completed Technology Project (2015 - 2017)

Technology Areas

Primary:

- TX08 Sensors and Instruments
 - └─ TX08.1 Remote Sensing Instruments/Sensors
 └─ TX08.1.5 Lasers

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

